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The sound modes in a plane fluid layer with sound-absorbing walls at different 
temperatures are evaluated. The eigenvalue problem is solved by means of a 
singular perturbation theory and the WKB method. The bending of sound, the 
nonexponential damping, and the role of the wall admittance are discussed. 
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1. I N T R O D U C T I O N  

Hydrodynamic modes are eigensolutions of the hydrodynamic equations. 
As such, they find wide applications not only in fluid mechanics (solutions 
of initial value problems), but also in statistical mechanics. For example, 
the wavevector- and frequency-dependent intensity spectrum of light 
scattered from fluids can be understood on the basis of the interactions of 
the incoming light beam with certain hydrodynamic modes. ~1) 

For unbounded fluids in thermal equilibrium the modes are charac- 
terized by a wavevector q, and for each q there are two viscous modes, a 
heat mode, and two sound modes. If q is not too large, the viscous and the 
heat modes are purely diffusive, while the sound modes are propagating 
with weak damping. These small-q equilibrium results for unbounded fluids 
have, of course, long been well established. However, generalizations into 
various directions have been considered more recently. 

One interesting option is to extend the hydrodynamic modes to large 
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q (being probed in neutron scattering), where standard hydrodynamics 
breaks down. These modes have been computed by de Schepper and 
Cohen (2) using kinetic theory. Staying within the small-q (i.e., hydro- 
dynamic) regime, another possibility is to consider fluids in nonequilibrium 
steady states. These states are established by imposing some constraints on 
the boundaries of the system which prevent it from relaxing to equilibrium. 
In this way one may induce a permanent shear stress or a heat flux in the 
fluid. The light scattering spectrum from fluids in nonequilibrium steady 
states shows exciting new features (3) which are most naturally explained in 
terms of the nonequilibrium hydrodynamic modes. ~4) 

In this paper I shall discuss the sound modes in a fluid layer bounded 
by two parallel plates of different temperatures. The resulting heat flux in 
the fluid modifies the sound modes in two ways: it causes sound bending 
(i.e., propagation along curved rays) and anomalous (i.e., nonexponential) 
sound damping. These effects occur because the speed of sound and the 
sound damping coefficient depend on the local temperature, which is a 
function of position. 

A sound wave that propagates in the direction in which the local 
sound damping coefficient decreases actually experiences much less damp- 
ing than in equilibrium. Boundary effects, therefore, cannot be ignored in 
many applications, even for large systems. For this reason I have computed 
the modes in the finite system, choosing so-called acoustic boundary condi- 
tions at the walls. These involve a parameter/~, the specific acoustic admit, 
tance, which is a measure of the elasticity of the walls. Depending on the 
value of/~, the walls are more or less sound-absorbing. 

Since the full eigenvalue problem in the presence of a heat flux and 
acoustic boundary conditions is rather complex, I have chosen a stepwise 
presentation. In Section 2 I review some of the general equations and 
describe the properties of the sound modes in an unbounded equilibrium 
fluid. Then, in Sections 3 and 4, I discuss, still for the equilibrium case, the 
effect of the walls on the computation of the modes. Whereas in the bulk 
fluid the sound modes are primarily due to pressure and longitudinal 
velocity excitations, there is also an entropy component close to the walls. 
To determine the sound modes in the presence of the walls, I use a singular 
perturbation theory. Sections 5 and 6 deal with the further complications 
due to the heat flux. It is found that the behavior in the boundary layers 
is essentially the same as in equilibrium. However, in the bulk region, the 
position dependence of the sound speed and of the sound damping coef- 
ficient has to be taken into account. The solutions are obtained by means 
of the WKB method (Section 6). The complete expressions for the sound 
modes are presented in Section 7. Finally, in Section 8, I conclude with a 
discussion of the results. 
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Some of the results to be derived here have been applied earlier in 
work (5) on the structure of the Brillouin lines in fluids subject to a heat 
flUX. 

2. THE H Y D R O D Y N A M I C  M O D E S  FOR AN U N B O U N D E D  
FLUID IN EQUIL IBRIUM 

As an introduction to the subject, I review in this section the calcula- 
tion of the hydrodynamic modes for an unbounded fluid in thermal 
equilibrium. To this end, I first write down the hydrodynamic equations, 
linearized about equilibrium: 

0 
& bP = (7 - -  1) DT v2 6p -- cV" 6U q- (7--  1) 1/2 D r  V2 ~5s 

~ 6 u =  - c V 6 p + ( F t - v ) W ' 6 u + v V 2 ~ u  (2.1) 

a 
- -  6S ----- (y - -  1 )1/2 DTV2 6p + DT v2 ~S 
at 

where the variables 6p(r, t), 6u(r, t), and 6s(r, t) denote the local deviations 
of the pressure, the flow velocity, and the entropy density, respectively, 
from their equilibrium values. These variables are scaled in (2.1), and 
throughout this paper, such that they all have the same dimension. 2 
Furthermore, (2.1) involves as parameters the speed of sound c, the ratio 
7 = Cp/Cv of the specific heats at constant pressure (ep) and constant volume 
(cv), and the generalized diffusion coefficients v, Ft, and Dr, denoting the 
kinematic viscosity, the longitudinal viscosity, and the thermal diffusivity, 
respectively. The generalized diffusion coefficients are proportional to the 
transport coefficients. 

In formal notation; eqs. (2.1) can be written as 

- - 6 a =  - ~ . 3 a  (2.2) 
c~t 

where 6 a =  (6p, 6u, 6s) and J f  is a linear hydrodynamic operator that 
follows from (2.1). Of course, this holds also when the system is bounded, 

2 The relations of 6p, 6u, and 6s to the true deviations in pressure, velocity, and entropy per 
unit mass,  denoted by ,Sp', 6u', 6s', respectively, are given by ~4) 

6p' = (7/Zr) a/2 c~p, 6u '  = p -~/2 6u, 6s' = (cp/pT) 1/2 g)s 

where p, T, and XT are the density, temperature, and isothermal compressibility, respectively, 
while 7 and cp are explained in the text. 

822/57/3-4-9 
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in which case the equations have to be supplemented by boundary condi- 
tions, however. When perturbations about a nonequilibrium steady state 
are considered, one still obtains equations of the form (2.2), but with a 
more complicated operator ~ .  In any case we will be dealing here with 
evolution equations of the form (2.2). They are associated with the eigen- 
value problem 

~,~. aK(r) = hKaK(r) (2.3) 

In (2.3) the index K labels the modes, hx being an eigenvalue and aK(r) the 
corresponding eigenvector. The eigenvectors may be normalized such that 

f d3r ilK(r)" aK,(r) = 6KK, (2.4) 

where ilK(r) is the adjoint eigenvector of aK(r), which solves the adjoint 
eigenvalue problem 

~ "  ilK(r) = hKiK(r) (2.5) 

where ~ is the adjoint operator of o~ [-with respect to the scalar product 
associated with (2.4)]. Assuming that the modes form a complete system, 
one can express the solution of the evolution equations (2.2) for given 
initial conditions 6a(r, 0) at t = 0 in the form 

6a(r, t)=~6eKaK(r)e -her ( t > 0 )  (2.6) 
K 

where 

6o~ K = f d3r 6a(r, 0)" ilK(r) (2.7) 

After these formal remarks, let us turn to the solution of the eigen- 
value problem (2.3), with ~ given by (2.1), for the unbounded case. 
Making use of translational invariance, it follows that the eigenvectors are 
of the form 

aK(r) = h exp(iq �9 r) (2.8) 

where q can be any (real) wavevector. Furthermore, it is advantageous to 
decompose the velocity f into a longitudinal and a transverse part, 

fi = ~ t )  + flit) (2.9)  
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where ~ = q/q (q = [ql ), and 

a('~= 9" a, a"~= (1 - ~ ) .  a (2.10) 

Inserting (2.8)(2.10) into the eigenvalue equations, one immediately 
observes that u (t) is decoupled from the other variables and satisfies the 
equation 

vq2fi (t) = ha (') (2.11) 

This gives rise to two viscous modes (since there are two independent 
components of u (t)) which have both the same eigenvalue, namely 

hvl q = h~2 q = vq z (2.12) 

and are of no further interest here. 
The equations for the remaining three variables ,6, fi(t), and 5 read, 

explicitly, 

(y - 1 ) Orq2fi + icqfi (') + (7 - 1 )1/2 Ovq2d = h~ (2.13a) 

icqfi + Flq2ft (t) = hft (~) (2.13b) 

(7 - 1) 1/2 DTqZfi + DTq 2d = h~ (2.13c) 

This leads to the characteristic equation 

h 3 -  (F~ + TDT) qZh2 + (e2q2 + y D r F t q 4 ) h -  c2Drq4=O (2.14) 

Although Eq. (2.14) can, in principle, be solved exactly, it is not 
necessary to do so, because it involves a small parameter in which the solu- 
tion can be expanded. The parameter is 

e I = Fq/c ~ 1 (2.15) 

where F denotes any of the generalized diffusion coefficients. The condition 
(2.15), which imposes an upper bound on the wavevectors, is a basic 
requirement for the hydrodynamic equations to be applicable. In fact, 
(2.15) requires that the variables change smoothly in space, so that the dis- 
sipative terms (those involving transport coefficients) be much smaller than 
the streaming terms. Since the hydrodynamic equations are supposed to 
hold only up to first order in el, it makes no sense to compute their 
solutions with a better accuracy. 

Solving thus (2.14) by first-order perturbation theory, one obtains the 
eigenvalues 

hHq= D r q  2 (2.16) 
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and 
1 2 h ~ q = i a c q + ~ F ~ q  ( a =  +1) (2.17) 

where F~ = Ft + (y - 1 ) D r  is the sound damping coefficient. The first solu- 
tion, (2.16), corresponds to the heat mode, which will not be discussed 
here. The other two solutions, given by (2.17), are the eigenvalues of the 
sound modes. 3 

Using (2.17) in (2.13), one may also evaluate the eigenvectors of the 
sound modes. To zeroth order, one finds tha t /~q  ~ (~ = aU~q and ~q = O. There 
are, of course, first-order corrections to these results. However, in the 
following we will only be interested in the zeroth-order eigenvectors. Going 
back to (2.8), considering also the adjoint problem, and normalizing 
according to (2.4), one obtains finally 

1 1 
p~q(r) = 4 - ~  exp(iq �9 r), poq(r) = 4 - ~  exp( - iq .  r) 

G ~7 
U~q(r)  = 47~3/------ 5 I] exp(iq" r), fi~q(r) = 493/-------- 5 ~ exp( -- iq- r) (2.18) 

Saq(r)=0 , saq( r )=0  

I conclude this section with two remarks that are important for the 
later discussion: 

1. Knowing that Ih~ql = O(cq),  one may also calculate the first-order 
eigenvalues and the zeroth-order eigenvectors without using (2.14). To this 
end, consider the system (2.13). Since Ihl--O(cq), it follows from (2.13c) 
that g=  O(el); hence, the last term on the left-hand side of (2.13a) is of 
order e~ and can be neglected. Equations (2.13a) and (2.13b) then reduce 
to a system for/~ and fi(z) alone, namely 

(7 - 1 )  DT.q2~ + icqfi (t) = h~ 

icqfi + Ftq2fi (l) = hfi r 
(2.19) 

which leads to a quadratic equation that is considerably simpler than 
(2.14), namely 

h 2 - Fsq2h + c2q 2 = 0 (2.20) 

The first-order solutions of (2.20) are, of course, in agreement with (2.17). 
(o to zeroth order. Moreover, one finds from (2.19) tha t /~q  = au~q 

31 use ~r also as an index to label the two sound modes. Thus, (2.17) should be read as 

h+q= +icq+ lFsq2; h_q= -icq+�89 ~ 
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2. Inserting (2.17) and (2.18) into (2.6), one may discuss the 
contribution of a sound mode (aq) to the general solution ha(r, t). It is 
then observed that each mode (o-q) gives rise to a term which behaves in 
space and time as 

a~q(r, t) ~ a~q(r) e x p ( - h o q t )  oc exp[iq �9 (r - aflCt ) - �89 

thus representing a damped plane wave. The wavefront, located at 
r~q(t) = a~tct, propagates uniformly with speed c either in the direction of 

(if a = +)  or - ~  (if a = - ) .  Furthermore, the wave is damped, the 
attenuation time being ~ = 2/l~q 2. The attenuation length, i.e., the distance 
traveled by the wavefront during the time r, is therefore given by 

2c 
l .  - ( 2 . 2 1 )  

Fsq 2 

Notice that lq = O(1/elq) [cf. (2.15)], implying that the attenuation length 
is of the same order as, or even larger than, the size of the system, d say, 
for all wavevectors in the range q<O(1/~ld). Under these circumstances 
the sound waves hit the walls, and boundary effects might become 
important. 4 

3. E V A L U A T I O N  OF T H E  S O U N D  M O D E S  IN THE  P R E S E N C E  
OF W A L L S  W I T H  A C O U S T I C  B O U N D A R Y  C O N D I T I O N S  

In this section 1 outline the calculation of the sound modes in the case 
that the fluid (still in equilibrium) is bounded. To be specific, let us 
consider a plane fluid layer of thickness d. Choose coordinates such that 
the walls coincide with the planes z = +d/2 and z = -d/2, respectively, and 
ignore boundaries in the x and y directions. Furthermore, let us impose 
so-called acoustic boundary conditions on the variables 6a(r, t) at the 
walls. These are given by 

(7 - 1 )I/2 6p + cSs = 0 ( 3 . 1 a )  

6uy=O ( z :  _+J) (3.1b) 6ux=O, 

Ft ~?3uz ] 

4 For diffusive modes, on the other hand, boundary effects are only relevant for very small 
wavevectors with q~ O(1/d). 
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where/3 >/0 is a dimensionless wall parameter, called the specific acoustic 
admittance. (6) In (3.1c), the plus sign applies at z = +d/2, while the minus 
sign holds at z = -d/2. 

The physical meaning of (3.1) is as follows: (3.1a) requires that the 
(excess) temperature, to which the left-hand side of (3.1a) is proportional, 
vanishes at the walls (perfectly heat-conducting walls). Condition (3.1b) 
says that the two tangential components of 6u vanish at the walls (perfect 
stick conditions). Finally, (3.1c) requires that the normal component of 6u 
be proportional to the normal-normal component of the (excess) pressure 
tensor. The specific acoustic admittance is a measure of the elasticity of the 
wall:/3 = 0 corresponds to a perfectly rigid wall, while/3 = oe corresponds 
to a completely deformable, i.e., elastic wall. The fact that /3 cannot be 
negative follows from thermodynamic reasons, since it describes dissipative 
processes. (4) 

It should also be remarked that the boundary conditions (3.1) are a 
special case of the most general boundary conditions which one can 
naturally impose on the hydrodynamic operator. (4) 

In order to solve the eigenvalue problem associated with Eqs. (2.1) 
and the boundary conditions (3.1), we use the fact that there is still transla- 
tional invariance in the x, y plane to make the ansatz 

aK(r)  = h(z )  exp( iq l  I �9 rll ) (3.2)  

where r l l=(x ,  y) and qll =(qx,  qy) may be any (real) two-component 
"horizontal" wavevector. Furthermore, let us decompose the velocity uK(r) 
according to 

ux(r) = V~bK(r)- (ez x V) ~K(r ) -  q-~ (ez x V) x Vv~(r) (3.3) 

where each of the scalar "potentials" ~bx, CK, and vK depends on z and rlt 
as indicated in (3.2). 5 From (3.3) it follows that 

V" u,~ = - ~ r  

e~" (V x uK) = ~bK (3.4)  

ez" IV• (V• UK)] = --~Vx 

with the operator 
d 2 

= - V 2 = q ~ l  dz 2 (3.5) 

5 Notice that ~b K and Ix  have the "dimension" q - t  because of the gradients in (3.3). 
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Notice from (3.4) that ~b~ is the potential for the longitudinal velocity, 
whereas the two components of the transverse velocity can be derived from 
~ and vK. 

Inserting (3.2) and (3.3) into (2.3), with ~ given by (2.1), and using 
(3.4), one finds that the transverse part of the velocity, represented by ~(z) 
and ~(z), is decoupled from the other variables, as was the case for the 
unbounded fluid. It follows that 

((z) = 0, ~(z) = 0 (3.6) 

for 
remaining variables obey the coupled equations 

(7 - 1) D v ~ ( z )  - c ~ ( z )  + (7 - 1) 1/2 DT~s(z) = h~(z) (3.7a) 

c~( z )  + F,~2q~(z) = h ~ ( z )  (3.7b) 

(7 - 1 )~/2 D r~/~(z) + Dr~g(z)  = hd(z) (3.7c) 

all but the viscous modes, which are not considered here. The 

which are the analogues of (2.13) for the finite case. Moreover, requiring 
that the eigenvectors satisfy the boundary conditions (3.1), and using (3.2), 
(3.3), and (3.6), we obtain at the walls 

(7-- 1)1/2/~ + ~ =  0 

~=0 

d~:  +_fl ( ~ _ F ,  d2~ "] 
dz c dz2 J 

(3.8a) 

( z =  ___a~ (3.8b) 

(3.8c) 

Equations (3.7) and (3.8) define a well-posed one-dimensional eigenvalue 
problem, from which the sound modes as well as the heat modes can be 
obtained. 

Before turning to this problem, I briefly discuss the adjoint problem. 
Upon deriving the adjoint eigenvalue equations and the adjoint boundary 
conditions from (2.1) and (3.1), one finds that the adjoint eigenvectors can 
be chosen according to 

where 

ilK(r) = ~(z) exp( - iqli" rll) (3.9) 

/~(z) = p(z), ~(z) = -fi(z), s(z) = ~(z) (3.10) 
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Hence, one does not have to solve the adjoint problem explicitly. Finally, 
one may insert (3.2) and (3.9), together with (3.3), (3.6), and (3.10), into 
(2.4) to derive the correct normalization of the eigenfunctions, which is 
found to be 

f 
a/2 1 

all2 dz [-p2(z) -- q~(z) ~ ( z )  + g2(z)] - (2n) 2 (3.11 ) 

where use has also been made of the boundary condition (3.8b). 
Let us now return to the eigenvalue problem (3.7), (3.8). One way to 

proceed consists in eliminating/~(z) and ~(z) from (3.7). This leads to an 
eigenvalue equation involving q~(z) alone, namely 

{DT(c2-h~,F,) ~2-h[c2-h(F ,+TDT)]  @ - h  3} ~q~(z)=0 (3.12) 

while/~(z) and g(z) can be expressed in terms of the solutions of (3.12) as 
follows: 

1- (t - h  c2 /]  (3.13a) 

, (z ,  c -h2(7_ l ) l /2D T 1 - h  ~+h2-~  ~ ( z )  (3.13b) 

Equations (3.12) and (3.13) are, of course, fully equivalent to (3.7). 
Since (3.12) has constant coefficients, an exponential ansatz 

q~(z) oc e ~z (3.14) 

is appropriate. Inserting this into (3.12), one obtains a third-order algebraic 
equation for q2 = q~l - s:2 [which is identical to (2.14), except for an overall 
factor q2]. Solving this equation for q2 at fixed h, one obtains at leading 
order in IhJ F/c 2 [which plays the role of el, as will be argued in (4.1) 
below] the three (possibly complex) solutions 

h2 
q~(h)=O, q~(h)= j +  .-., q2(h)= + -.. (3.15) 

where the dots indicate higher order corrections. Equations (3.15) lead to 
six characteristic wavenumbers, given by Kj+(h)=+[q~l-q~(h)] 1/2 
( j =  1, 2, 3). Hence, the general solution ~(z) of (3.12) is a linear combina- 
tion of the six exponential function exp ~j+z, involving six unknown 
constants. Upon computing now /~(z) and g(z) according to (3.13) and 
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applying the boundary conditions (3.8) (three on each wall), one obtains 
a linear and homogeneous system of six equations for the six constants. 
The condition that this system have nontrivial solutions finally leads to the 
characteristic equation from which the eigenvalue spectrum is obtained. 

Although the method described above is conceptually simple and 
correct, I shall not proceed in this way here, since the actual calculation 
gets rather involved. This is mainly due to the fact that the full information 
about the heat modes (in which we are ultimately not interested) has to be 
carried along. I instead prefer to use the small parameter ~ [cf. (2.15)] at 
an early stage of the calculation. In the next section I will outline how this 
can be achieved by applying a so-called singular perturbation theory. (7) 
Knowing how this method works is even more important in the non- 
equilibrium case, where the starting equations are far more complicated. 

4. S I N G U L A R  P E R T U R B A T I O N  T H E O R Y  

In this section I outline how the sound modes in the bounded system 
are obtained by using a singular perturbation theory. In short, the basic 
idea is as follows: It is implied by the results found in (3.15) that the spatial 
variation of the eigenfunctions takes place on three different length scales, 
which are determined by the characteristic wavelengths I~cj(h)l-l= 
Jq~l-q~(h)1-1/2 ( j =  1,2, 3). I shall argue that the scale [~c31 1 is much 
shorter than IKII 1 and IK21-1, and that the short-scale changes occur only 
near the walls. This will make it possible to derive two sets of equations, 
one for the bulk region away from the walls, and another for the boundary 
layers. Both sets are considerably simpler than (3.7) [-resp. (3.12), (3.13)] 
and will be solved separately. Finally, the two solutions will be matched 
analytically. 

First notice from (3.15) that the branch q~(h) coincides with the 
leading-order "dispersion relation" for the sound modes in the infinite 
system [-h 2 =  -c2q2; cf. (2.17)]. The contributions to the eigenfunctions 
arising from the other two branches, q~ and q~, must therefore vanish, or 
at least be small, in the limit d ~  oo at fixed z. Since the branch qZ(h) leads 
to the bulk wavevectors of the sound modes, one can identify the q 
appearing in (2.15) with Iq2] = Ihl/c, to obtain 

Ihl/~ 
51= j ~1  (4.1) 

as a ~ small parameter. Recall that this condition guarantees that the solu- 
tions lie in the hydrodynamic regime. 
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Assuming that Re q~/> q~l (Re denotes the real part), 6 one may easily 
show with the aid of (3.15) and (4.1) that I~cll = qll <~ Ihl/c and 1•21 ~< Ih[/c, 
while I~c3] = O ( e l  m Ihl/c). Thus, the scale ]1c3[ -1 is a factor e11/2 smaller 
than the other two scales. Moreover, it is obvious that changes on the scale 
i~c31-1 can only occur near the walls, for, otherwise, one would be unable 
to recover the infinite-system results (which do not involve that scale) in 
the limit d ~ oo at any fixed z. 

From the above considerations it follows that it is possible to discuss 
the eigenvalue equations in the bulk region and in the boundary layers 
separately. The bulk region is the regime sufficiently far away from the 
walls such that all terms changing on the scale I~c31-1 have essentially 
dropped to zero. Hence, all z satisfying the condition - d / 2  + e]/2r 4~ z 4~ 
d / 2 -  ,~ll/2C/Ih [ belong to the bulk region. The boundary layers, on the other 
hand, are the regions close to the walls where changes occur predominantly 
on the scale I~c31-1, whereas changes on the scales 1~c1[-1 and IK21 ~ can 
be neglected. Hence, the boundary layers consist of all z satisfying the con- 
ditions - d / 2  <<. z 4~ - d / 2  + c/ih[ or d/2 - c/Ihl ~ z <<. d/2, respectively. Notice 
that the bulk region and the boundary layers are partially overlapping. 
This will make it possible to match the solutions to be obtained in each 
regime. 

I first discuss the bulk region, where spatial variations occur only on 
the scales 1~11 1, [~c2 [ - 1 >  c/[hl, implying that ~ is of the order Ihi 2/c2. For 
this reason one can apply to (3.7) the same arguments that were used 
before in going from (2.13) to (2.19). Namely, from (3.7c) one finds that 
d(z) is of the order el. Hence, the last term on the left-hand side of (3.7a) 
is of the order e~ 2 and can be neglected. Equations (3.7a) and (3.7b) then 
become a closed system for /9(z) and q~(z) alone, from which one can 
eliminate/3(z) to obtain 

[ (c  2 -  h C )  + h21 2 6 ( z )  = 0 (4.2) 

This equation is the analogue of (2.20) and holds consistently up to first 
order in el. For completeness I also quote the zeroth-order results for/~(z) 
and ~(z) in the bulk region: 

= -  6(z) (4.3a) 

~b(Z) = 0 (4.3b) 

6This is equivalent to assuming that the quantity Q~(h) defined by q~(h)= q~ + Q~(h) has a 
nonnegative real part. In the infinite system this is always the case, since Qz is here the z 
component of the real wavevector. Remark, however, that the condition Re QZ(h)>~ 0 does 
not hold for certain "interfacial modes, ''(8) which are not considered here. 
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Equation (4.2) is easily solved, the general solution being 

q~(z) = ~b(z) - Ae -q'lz + Be q''z + Ce A(*)-" + De-A(h)z (4.4) 

where the label b indicates "bulk," 

h 2 "~1/2 
A(h)=(q~lqc2~-hFs  ( - ~ < a r g  A ( h ) ~ < ; ) ( 4 . 5 ,  

and A, B, C, and D are arbitrary constants. In (4.5) the main branch of the 
square root is understood, as indicated in brackets. 

Next let us turn to the boundary layers, where variations on the scale 
[tc3 ] 1 occur, so that d2/dz 2 is of the order /~11 [hl2/cZ>~q~l. Since the 
thickness of these layers is small compared to IKII-1 and 1•21 1, we need 
only keep the leading order terms in ~1. Thus, we derive from (3.12) the 
equation 

( D T ~ z 2 + h )  d4 
Tz  4 = o (4.6) 

and from (3.13) 

d2 ) d2 
DTa-7+h )-Tz2 (z) (4.7a) 

c d 4 . 
~(z) - h2(7 _- 1 ),/2 DrT~4 r (4.7b) 

Equation (4.6) is now solved in each layer separately. In the layer 
close to z = d/2, the general solution of (4.6) can be written as a linear 
combination involving six terms, two of which are proportional to 
exp [ _ 2(h)(z - d/2) ], respectively, where 

h "] 1/2 7l 
,48, 

while the other four terms yield a third-order polynomial in ( z -d /2) .  The 
term e x p [ - 2 ( h ) ( z - d / 2 ) ]  must be discarded, since it increases exponen- 
tially away from the wall. The remainder contains five unknown constants, 
three of which can be determined by applying the boundary conditions 
(3.8) at z =  d/2. Thus, one finds 
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--1 F+ 23(h) z -  (4.9) 
6 

where E+,  F+ are arbitrary constants and 

I also quote the results for #(z) and g(z) near the wall, which are 

c 

c exp [2(h) ( z _  d ) ]  (4.11b) ~(+)(z) 
(~ - -  1)1/2 Dr E+ 

Notice that #(+)(z) does not involve an exponentially decaying part. 
In the other boundary layer, located near z =  -d/2, the solution is 

obtained in the same way. Here one finds 

c h 2 

+ g  F X3(h) 

where E_ ,  F are arbitrary constants, and expressions for #(z) and ~(z) 
that are similar to (4.11). 

In the final step of the calculation, the general solutions, found so far 
in the bulk region and the boundary layers separately, have to be matched 
in the overlap region 

d c d c d C d _  e 1/2 c 

 -lh--l z<2 l lh I 

respectively. I outline the method only for the overlap region near the wall 
at z = d/2, since the other overlap region is treated in the same way. 
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For z values in the overlap region near the wall at z = d/2, the for- 
mulas (4.4) and (4.9) both apply. Moreover, the z values in this range are 
sufficiently far away from the wall for the exponential term in q~(+)(z) to be 
negligible. Yet, they are close enough to be wall so that only a few terms 
in a Taylor expansion of e~b(Z) about z = d/2 need to be taken into account. 
Expanding, therefore, rib(z) up to third order in (z-( t /2) ,  and comparing 
the result with the third-order polynomial appearing in q~(+)(z), one 
obtains four relations between A, B, C, and D and E+,  F+,  which I do not 
write down here. 

For the other overlap region, near the wall at z = -(t/2, the procedure 
is the same, resulting in four relations between A, B, C, and D and 
E , F_ .  In total, thus, one obtains eight linear and homogeneous equa- 
tions for the eight unknown constants in (4.4), (4.9), and (4.12). 

The eigenvalue spectrum is obtained by solving the characteristic 
equation of this 8 x 8 system. Moreover, for each eigenvalue one finds a set 
of coefficients A, B, C, D, E+,  F+ ,  E_ ,  and F _ ,  which is uniquely deter- 
mined up to a normalization constant. Inserting these results into the 
above expressions for ~(z),/~(z), and ~(z), one finds all the eigenfunctions, 
which are, finally, normalized according to (3.11). 

In the remainder of this section I only quote the characteristic equa- 
tion and briefly outline its solution. Complete expressions for the eigen- 
values and eigenfunctions may be obtained from Section 7 by putting all 
parameters equal to constants, and a discussion of these results is given in 
Section 8. 

Since the system is invariant under a reflection at the plane z = 0, it 
follows that the modes have either odd or even parity. For each class one 
finds a separate characteristic equation, which reads 

exp A(h)d= -G(h)  (4.13a) 

for the odd modes, and 

exp A(h)d= G(h) (4.13b) 

for the even modes. Here 

h [ A ( h )  + qil] + c f l (h )[A2(h)  - q~l] 
6(h)  = 

h[A(h) - qll ] - cfl(h)[A2(h) - q~I] 
(4.14) 

and A(h) is given by (4.5). 
Actually the calculation yields that the qli appearing in the terms 

[A(h) + qrl] and [ A ( h ) -  qil] of (4.14) should be replaced by qll coth qlld/2 
for the odd modes and by qll tanh qlld/2 for the even modes. I have omitted 
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the factors coth q iLd/2 and tanh qud/2 here, since they are only significantly 
different from 1 if qud<~l. In this case, however, qttcothqttd/2 and 
qu tanh qud/2 are of the order lid, which is negligible compared to IA(h)] 
for the modes in which we are ultimately interested [cf. (4.15)-(4.17)]. 

From (4.13) one finds first that 

A(h) = iq~, + dlOg G(h) (-~z < arg log G(h) <~ ~) (4.15) 

where qz, is a discrete wavenumber, defined by 

qz, =nn/d (4.16) 

and n may be any positive integer. Furthermore, the main branch of the 
logarithm is understood. Note that negative integers n have to be excluded 
in (4.15) due to restriction on arg A(h) [cf. (4.5)]. For each n, Eq. (4.15) 
yields two eigenvalues, denoted by h~q,(a = +), where qn = (qu, qz,). 

To obtain these explicitly, I restrict consideration to modes for which 
the wavelengths qz, 1 are small compared to d. Then one has, in addition to 
el, a second small parameter, namely 

1 
e2 = - -  ~ 1 (4.17) 

nT~ 

For these modes the second term on the right-hand side of (4.15) {s small, 
and the solutions h~q, are straightforwardly obtained by applying a first- 
order perturbation theory in el and 8 2. 

5. EVALUATION OF THE S O U N D  M O D E S  IN THE 
PRESENCE OF A STEADY HEAT FLUX 

Let us now consider a more complicated situation, in which the fluid 
is no longer in equilibrium. The geometry is chosen as in the preceding 
sections; however, let us now suppose that the two walls, located at 
z = +d/2, are maintained at different temperatures, T (-+), respectively. As a 
result, a steady heat flux in the z direction is established, giving rise to a 
one-dimensional temperature profile T(z), which is determined by the 
equation of heat conduction 

_d ~(T(z)) ~= o 
dz 

where ~(T) is the thermal conductivity of the fluid. 
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The temperature profile introduces a new (local) macroscopic length 
L v, given by 

L v ( z ) =  d l n T - 1  (5.1) 
dz 

which may compete with d. L v is infinite in equilibrium and gets smaller 
the further away the system is from equilibrium. I exclude, however, the 
extreme case Lv ~ d. Hence, the temperature is still of the same order 
of magnitude throughout the system. Moreover, since all parameters 
P = c, 7, F,... appearing in the hydrodynamic equations depend on tempera- 
ture via local equations of state, it follows that they become functions of z, 
too. Let us assume that the equations of state are such that ~ In P/O In T is 
of the order 1 for all P in the range of temperatures being considered. 7 This 
implies that none of the parameters change on a scale much smaller 
than L v. 

To define the eigenvalue problem for the sound modes in a proper 
way, one starts from the hydrodynamic equations, linearized about the 
steady state, and the boundary conditions. The linearized equations read 

1 dT 
6p= W. ( 7 -  1 ) D r V f i p - c W - f i u - ~ C ~ z f U ~ + W - ( 7 -  1)I/2 DTV 6s 

0 1 dT 
~t 6u = - V c  @ + ~ ca -d-Tz ez @ + V ( F t -  v)V. 6u + V. vV 6u (5.2) 

ca dT 
--  as = V- (7 - 1)1/2 D r  V 61) ~u z + V .  DrV  6s 
at (7 --  1 )1/2 dz 

where the position dependence of the parameters has not been indicated 
explicitly. Moreover, e, is the unit vector in the z direction and a is the 
thermal expansion coefficient. Impose again acoustic boundary conditions, 
given by 

( ~ - -  1) 1/2 6p--]-(~S-m_O 

6ux:O, 6uy=O (z:+~ (5.3) 

7 7z/ 

Notice that the walls at z = +d/2 are allowed to have different acoustic 
admittances, fl~• respectively, to include the possibility that fl is also a 

7 Steady states near phase transitions are thus excluded from the present discussion. 
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function of temperature, or that the walls are of a different nature. Further- 
more, it is understood in (5.3) that the limits as z - *  +d/2 of the fluid 
parameters are to be used. 

It should be remarked that among the dissipative terms only those 
proportional to V. FV have been kept in (5.2), while corrections of the 
form dF/dz 3~ and dZF/dz 2 have been dropped. Moreover, a term propor- 
tional to dF/dz has been omitted in the last member of (5.3). All these 
terms are negligible in the approximation to be made, as will be indicated 
below. 

In order to solve the eigenvalue problem associated with (5.2) and 
(5.3), one makes again the ansatz (3.2) (since there is still translational 
invariance in the x, y plane), and proceeds as in Section 3 to derive a 
system of one-dimensional equations and boundary conditions, similar to 
(3.7) and (3.8). Since these equations are somewhat lengthy, I shall not 
quote them here. Instead, I restrict consideration to describing briefly their 
structure and giving an outline of how they are simplified. 

One finds again that ~ is decoupled from the other equations, and thus 
zero for the sound modes. In contrast to the equilibrium case, however, one 
finds that the other transverse potential 6 is coupled to (/~, ~, d) via the 
temperature gradient, which results in four equations for (/~, q~, 6, d). 
Moreover, since 6 cannot be put equal to zero, it has to be kept in the 
boundary conditions, too. 

Due to the fact that the parameters involved in these equations do not 
change by orders of magnitude throughout the system, one may generalize 
(4.1) to obtain the local condition 

Ihl r(z)  
~, c2(z------- ~ ~ 1 (5.4) 

To keep the problem analytically tractable, assume in addition that 

c(z) 
~3 - Ihl Lv(z-~) ~ 1 (5.5) 

This new condition imposes a lower bound on the eigenvalue spectrum, 
whereas (5.4) yields an upper bound. The main purpose of (5.5) is to keep 
the effect caused by the terms proportional to dT/dz in (5.2) small 
compared to that of the leading streaming terms. 

In view of (5.4) and (5.5), one may argue that the eigenfunctions 
change essentially on the same length scales as in equilibrium. These follow 
from (3.15), all parameters being replaced by their local values. 8 In par- 

s Actually, the variable ~ adds a new branch to (3.15), given by q2 = h/v + .... However, q2 
is of the same order as q]. 
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ticular, the branch qZ(h; z) = -hZ/c2(z) leads to the local bulk wavevectors, 
so that conditions (5.4) and (5.5) may also be interpreted as restrictions on 
the local wavelength Iq2(z) l - l=c(z) / lh l .  Moreover, one can again dis- 
tinguish between a bulk region and two boundary layers and therefore 
apply a singular perturbation theory, as outlined in the last section. 

The next task is thus to derive separate equations for the bulk region 
and the boundary layers. In the bulk region, where ~ is of the order 
fhl2/c 2, o n e  can again derive a closed system for/~ and q~ alone, by arguing 
that all couplings involving ~ and g are of the order e~ and that all correc- 
tions to the dissipative terms not explicitly quoted in (5.2) are of the order 
el e3. Eliminating/~ from this system, one obtains, consistent up to the first 
order, 

[ ~ ( c  2 - h C )  + h~3 ~q ; (z )  = o (5.6) 

This equation is the same as (4.2), except that c and F s are now given 
functions of z. 

In the boundary layers, where d2/dz 2 is of the order ei -1 dhl2/c 2 ~>q~l, 
one need only keep the leading terms, as was agreed in Section 4. To this 
order, 19 gets decoupled from (/i, q~, g), and the corrections to the dissipative 
terms can be neglected, too. The equations are thus essentially the same as 
in equilibrium, so that one can use the general solutions ~bI+)(z) and 
~b ( ) ( z )  given in (4.9) and (4.12), with the minor modification that fl and 
the fluid parameters have to be replaced by their local values at the walls 
z =  +d/2 and z - - - d / 2 ,  respectively. The fact that the boundary layer 
solutions are essentially as in equilibrium is not very surprising after all, 
since the thickness of these layers is much smaller than Lv. 

Since we already know the solution in the boundary layers, there 
remains only the bulk equation (5.6) to be solved. This is achieved by using 
the WKB method, 0) as will be discussed next. 

6. WKB M E T H O D  

In this section I discuss how the general solution of the bulk equation 
(5.6) is obtained by means of the WKB method and, subsequently, how the 
characteristic equation for the sound modes in the presence of a heat flux 
is solved. The complete solution, i.e., the eigenvalues and eigenvectors, will 
then he presented in the next section. 

To solve Eq. (5.6), first put 

~ ( z )  = (c 2 - h C )  ~ g ( z )  (6.1) 

822/57/3-4-10 
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and make the WKB ansatz 

~(z) = exp ~(z) (6.2) 

which defines a new function 7t(z). Inserting (6.1) and (6.2) into (5.6), we 
obtain the following equation for gt(z): 

(__~zz~ 2 d 2 ~P h 2 
+ ~ z  2 = q~l + c2(z) _ hFs(z) (6.3) 

In the equilibrium case, where c and F~ are constants, two solutions 
of (6.3) are given by gt(z) = +_A(h)z, with A(h) as defined in (4.5). To solve 
(6.3) also for nonconstant coefficients, assume that dZlIt/dz 2 (which is 
strictly zero in equilibrium) is small compared t o  (d~t/dz)  2. Applying first- 
order perturbation theory, one then obtains the following two solutions: fz 

~P(z) = _+ d z ' A ( h ; z ' ) - � 8 9  (6.4) 
-d/2 

where 
h 2 ~ 1/2 

For the perturbative solutions given in (6.4) to be consistent, we have to 
require that 

1 d tog A(h; z) 
e'3 = A(h; z~) dz ~ 1 (6.6) 

This is actually a stronger condition than (5.5), as I shall discuss in 
Section 7. 

To construct now the general solution of (5.6), notice from (6.1) (6.3) 
that N~ = -h2~q~. Hence, two solutions q~l(z) and 0~2(z) can be chosen to 
be proportional to the two functions obtained by inserting (6.4) into (6.2). 
These are ;z 

1 dz' A(h; z') (6.7a) ~l(z) = [A(h; z)]1/2 exp -e/2 

1 dz' A(h; z') (6.7b) ~2(z) = [A(h; z)] t/; exp - -a/2 

Two more solutions of (5.6) are obviously given by ~(z) = exp( _+ qH z). The 
general solution of (5.6) can therefore be written in the form 

e)(z) = ~b(Z) =- Ae q''~ + Be -q''z + Cq~l(Z) + Dq~2(z) (6.8) 

where A, B, C, and D are arbitrary constants. 
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To determine the constants, one has to match the bulk solution (6.8) 
to the boundary layer solutions given by (4.9) and (4.12) (with the small 
modifications indicated in the last section). Proceeding as in Section 4, one 
then finds a linear and homogeneous system of eight equations for the eight 
unknown constants A, B, C, D, E+,  F+ ,  E ,  and F_ .  This system leads 
to the characteristic equation 

~d/2 
exp 2 "-d/2 dz A(h; z) = G(+)(h) G ( ) (h)  (6.9) 

where G(h) is given by (4.14), 9 the upper labels ( + )  and ( - ) i n d i c a t i n g  
that the parameter values at the wall z = +d/2 and z = -d/2, respectively, 
are to be used. 

Equation (6.9) is the generalization of (4.13) in the presence of a heat 
flux. While in the equilibrium case we obtained separate characteristic 
equations for the odd and for the even modes, we have here only one 
characteristic equation for all modes, since reflection symmetry is lost. 

I next discuss how Eq. (6.9) is solved. First one finds from (6.9) that 

fa/2 dzA(h;z)=in~+�89 G( )(h)] (6.10) 
a/2 

where n may be any positive integer, and the main branches of the 
logarithms are implied. Negative integers n are again to be excluded due to 
the restriction on arg A(h; z) [cf. (6.5)]. 

To solve (6.10) for each n, I restrict consideration, as in Section 4, to 
modes for which e2= 1/nrc ~ 1 and use perturbation theory in el and e2. I 
first discuss the zeroth order, in which the second term on the right-hand 
side of (6.10) and the sound damping coefficient in (6.5) can be neglected. 
This leads to the equation 

f d/2 dz qz(z)=n~ (6.11) 
--d/2 

where qz(z) is given by 

,612, 

Equation (6.11) is a generalization of (4.16) that determines a local, 
positive wavenumber qnz(Z) for each n, which can be obtained in the 
following way. 

9 1 omit again factors like cosh qild/2 and tanh qu d/2 for reasons explained in Section 4. 
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First it follows from (6.12) that 

c2(z)[q~l + q2(z)] = _h  2 = c2[q~ + q~(zo)] 

for any "reference point" Zo, since h 2 is independent of position. This rela- 
tion allows us to derive the whole function q~(z) from its value in the 
reference point Zo: 

C(Zo) r C2(Zo)--C2(Z) q~l ]1/2 (6.13) 
qz(z)=q~(z~ c(z) L 1+  c2(zo) qz2(-ZoiJ 

Upon inserting (6o13) into (6.11), one can, in principle, compute the 
integral over z to obtain an equation for qz(zo), whose solution is denoted 
by qnz(Zo). This value may, in turn, be inserted into (6.13) to yield qnz(z) 
for all z. 

As will be discussed in Section 8, the position-dependent wavenumbers 
q,z(Z) describe the bending of sound due to the inhomogeneous sound 
velocity c(z). It should also be emphasized that the existence and unique- 
ness of the qnz(z) at every point are guaranteed (for the modes considered 
here) due to assumption (6.6), which excludes the possibility that A = iqz 
can locally become zero.l~ 

After the q,z(z) have been obtained in the manner described above, 
one can go back to (6.12) and solve for the zeroth-order eigenvalues. Intro- 
ducing the local wavevectors 

q~(z) = (qu, qn~(Z)) (6.14) 

one then obtains 

h~)r = i~c(z) q,(z) (6.15) 

where q,(z)= ]q,(z)], and the label (0) indicates the zeroth order. Recall 
that the right-hand side of (6.15) does not depend on z, although c(z) and 
qn(z) separately do. 

Next let us evaluate the first-order corrections. Putting h~q,= 
h~qo +hm~qn, w h e r e  h(J) denotes the first-order correction, we obtain by 
expanding (6.5) and using (6.15) 

A(h~q~;  z )  = iQz,~q,(Z ) (6.16) 

where Q~,~q,(Z) is a local, complex wavenumber given by 

I 1 h (~lq), ] 1 (6.17) 
Q~,~q(Z) = q,z(Z) + i~ iqn-(Z ) C(Z) j (]nz(Z) 

lO In that case total sound bending would occur, (~) and the methods described above would 
have to be modified. 
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Here/q,(Z) is the local attenuation length, defined by 

2e(z) 
/q~(Z) -- i s ( z  ) q](z) 

(6.18) 

[cf. (2.21)] and Onz=qnz/q,. Moreover, I introduce the mode-dependent 
wall-absorption coefficients b~q= �89 log G(hq,) with G(h) given by (4.14). 
Using the zeroth-order results (6.15) and A(h~)q,)= iqn~, one finds 

q,,~ -- iqll + ~fiGq.qn 
b~q~ = ~ l o g  (6.19) 

q.~ + iqll - O'fl~q.qn 

where fl~q= fi(h~o) is found from (4.10) to be given by 

fl,q = (1--  i~ YI's fl (6.20) 

Using (6.16) and (6.19), one can write Eq. (6.10) in the form 

f d/2 dz Qz,~q~(Z) = n g  - ia[b(~;] + b(~;, ~3 (6.21) 
-d/2 

Upon inserting (6.17) into (6.21) and using (6.10), one finally finds that the 
first-order corrections to the eigenvalues are given by 

where 

h(+) 4_ h( )q 
h(~l~ = Cq, - - +  

Lq. aqn ] 
(6.22) 

f 
a/2 dz 1 6 q, 
--U/2 qnz(Z) C(Z) Cqn (6.23b) 

fu/2 dz 1 6q, (6.23c) 
- 72 4.z(z) l.~ Lq. 

In (6.23), 6q, may be interpreted as the length of the curved ray that is 
described by the local wavevector (notice that 6q~ = d/4,,z in equilibrium). 
Moreover, Cq. and Lq~ are averages of the speed of sound and the attenua- 
tion length, respectively, along the ray. 

Equations (6.15) and (6.22) determine the eigenvalues h~q, up to first 
order. To obtain the corresponding eigenfunctions, one has to compute the 

ea/2 dz (6.23a) a.=J 
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constants Aaq~, B,zq,,... to zeroth order from the 8 x 8 system. Moreover, to 
zeroth order, the relations (3.9) and (3.10) for the adjoint eigenvectors 
apply also in the presence of a heat flux. This implies, in particular, that the 
normalization is still given by (3.11). In the next section I shall present the 
results. 

7. RESULTS 

In the previous sections I have discussed how the sound modes in the 
presence of a heat flux and sound-absorbing walls are evaluated. In this 
section I present the results. First, however, I recall the conditions under 
which they apply. 

In the calculation I have assumed that the dimensionless parameters 
el ,  e2' ~3, and e; given by (5.4), (4.17), (5.5), and (6.6), respectively, are 
small. In view of (6.15), one may rephrase these conditions in terms of the 
local wavevectors as follows: 

r(z) q~ 
1 (7.1a) 

~ - c ( z )  

1 
e 2 = - ~  1 (7.1b) 

1 1 ( q , ( z ) ~  2 
E3 Lv(Z ) q,(z) ~ 1, e; - Lv(z ) q,(z) \ q , - - ~ J  ~ 1 (7.1c) 

where, in the last member, I have used that A = iqnz to leading order. 
Notice that the smallness of e~, which was used in order to apply the WKB 
method, implies the smallness of e3, and is thus a stronger condition. The 
first condition, (7.1a), yields an upper bound for the local wavevectors 
q,(z), restricting them to the hydrodynamic regime, as mentioned before. 
The other two conditions, (7.1b) and (7.1c), basically imply lower bounds 
for q~z(z). 

The eigenvalues have been calculated up to first order in the ~, while 
the eigenvectors have been evaluated to zeroth order. Yet, first-order 
corrections in the complex wavenumbers Qz,~q,(Z) [cf. (6.17)] have been 
kept in order to describe correctly the slow modulations in the amplitudes 
of the eigenfunctions. 

The eigenvalues and eigenfunctions are most conveniently expressed in 
terms of the local, complex wavenumbers Qz,~q,(Z) introduced in (6.17). 
Inserting (6.22) into this expression, one finds 
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[ 1 C q o l ]  1 
Q~,oq,(Z) = q,~(z) + ia lq~z) c(z) LqJ qnz(Z) 

Cq~ b ( + ~q. + b~q~ ~ 
io- - -  (7.2) c(z) 6~.~.~(z) 

The quantities appearing in (7.2) have all been defined in Section 6. Consis- 
tent up to the order considered here, the eigenvalues can then be written 
in the form 

hoq. = iac(z) Q~,,(z) + �89 Q~q,(Z) (7.3) 

where 
(,q2 + g~)2 ~1/2 (7.4) Qoq~ =,~11 ~z,~,,, 

Notice that Q~q,(Z) is defined in such a way that the right-hand side of 
(7.3) does not depend on z, as it should be. 

The eigenvectors aoq~ and their adjoints ,~q,(r) can both be 
expressed in terms of the three eigenfunctions/~,,(z), q~q,(Z), and ~q,(Z) 
according to (3.2), (3.3), (3.6), (3.9), and (3.10). These will be given next. 

Putting 

1 1 Cqn]l/2 
Uq,(z)=2-~[O,z(Z)fq - ~ ]  (7.5) 

one finds for the pressure eigenfunctions 

~,,(z)  = N,~(z) cos dz' Q~,~q~ + icrb(~q (7.6) 
- d/2 

Furthermore, the entropy eigenfunctions, which are localized in the 
boundary layers only, can be written as 

~(+) 
~q.(z)  = S~qo (z) + ~o)(Z) 

where 

g(+ )(z) = - ( -- 1)n N (q+)(~ ( + ) ~ q o  , - 1 )1/2 (cosh boq,(+~ ) 

[ X exp L(1 -- io-) \ ~-DV~/i -/ 

~ .~ (z )  = -N~;-~(~,~-~- l)  ~j~ (cosh b~g~) 

{c(-)q~-))l/2 (z+~d)] (7.7b) x e x p [ - ( 1 - k r ) \  2D(v_)j 
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Finally, the longitudinal velocity eigenfunctions are given by 

ia [/3o,.(z) + 0oq,(z) 6oq.(Z)-- q ~ )  
(~(+) __ 1)1/2 Dr(+7 q~(+) 

+ i c(+) ~q, ,_. 

+ i (7 ( - )_1)1 /2 r~(  1,~( ) ] 
~ r  ~, d~)(z)  (7.8) 

c (-) 

where 

{q ,z (z ) )  1/2 (+) sinh qll(z+d/2)  
- (cosh b~q.) 0oq,(Z)= Nq,(Z) ( - - 1 )  n . _ ( + ) ]  

kq ,z  / sinhqlld 

f q,z(z), ~ 1/2 (cosh ~' -7, sinh qtl(z - d/2)~ 
- \  q(z ) j U~q,y si--~ ql--- ~ f (7.9) 

Concerning Eq. (7.8), it should be noted that the entropy terms are 
small. However, I kept them since they become large when derivatives of 
~q ,  with respect to z are considered. 

8. D I S C U S S I O N  

I conclude with a discussion of the results. The expressions for the 
sound modes that have been derived in this paper, and summarized in the 
last section, involve finite-size as well as nonequilibrium effects. Both effects 
will be discussed separately. 

8.1. F in i te -Size  Ef fects  

The finite-size effects are basically the same whether or not a heat flux 
is present. I shall therefore discuss these for the equilibrium case only. 
From (7.2)-(7.4) one then finds 

bo'qn 
Qz'~  d (8.1) 

and 

1 2 b~q~ 
h,q,, = iacq, + ~ Fsq ~ + 2cOn z --s (8.2) 

where qnz = nrc/d. Comparing (8.2) with (2.17), it is observed that the eigen- 
values in the finite system contain an extra term proportional to the wall- 
absorption coefficient b~q. For finite values of fl (the acoustic admittance), 
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this term can be shown to have a positive real part. Hence, it describes a 
sound damping that is due to the walls. Notice that the wall damping is of 
the same order as the damping in the fluid when lq, (the sound attenuation 
length) is of the same order as d. 

To focus more on the role of fi, let us choose q,,z>>qll. In this case the 
expression (6.19) for the wall-absorption coefficient simplifies to 

I1  l + f l  
~ln 1 - f l  (f l< 1) 

b a q  ~ = (8.3) 

ln ~ - ~ -  ia ~ ( f l > l )  

In going from (6.19) to (8.3), I have replaced/g~q, by fl, thus dropping the 
small correction term appearing in (6.20). This is not allowed, however, 
when fl is very close to 1, since the expression (8.3) diverges logarithmically 
in that case. Actually, b~q, goes through a resonance at fl = 1. In the 
resonance one finds from (6.19) and (6.20) that 

1 2 c  - i a  ~ 
baq n = -~ In ~r,q-----~. -4 (/~ = 1) (8 .4)  

Note that a finite value for b~q, at fl = 1 has been obtained because I kept 
the full pressure tensor in the boundary condition (3.1c) instead of just the 
pressure, as is usually done. (6) Yet the expression (8.4) is probably only 
qualitatively correct, since I have still neglected terms of the same order in 
going from (4.14) to (6.19). Equation (8.4) indicates, however, that the 
wall-absorption coefficients are finite for all fl, and it indicates the right 
order of magnitude. A complete discussion of the modes near the resonance 
requires further investigation. However, not too close to the resonance, the 
expression (8.3) is appropriate. 

Using (8.3), I next discuss the properties of the equilibrium sound 
modes (with qnz > qH) for various ft. For completely rigid walls (fl = 0) one 
finds b~q =0.  Hence the eigenvalues (8.2) are the same as for an unboun- 
ded fluid, except that only discrete wavevectors are allowed. Notice from 
(7.7) and (7.9), however, that the entropy ~,q.(Z) in the boundary layers 
and the function 0~q,(Z) (which are proportional to cosh b~q,) do not 
vanish for rigid walls. As fl is increased, b~q, grows also, and the amplitudes 
of g~q,(z) and O~q,(2') increase as well. At the resonance (fl= 1), b~q,(z) 
reaches a maximum and a phase shift occurs. If fi is increased even further, 
Re b~q~ gets smaller, implying less wall absorption, and the amplitudes of 
doq.(Z) and 0~q,(Z) decrease. Finally, in the limit of completely elastic walls 
(fl= ~ ) ,  one obtains b~qo=- ian /2 ,  so that the wall damping in (8.2) 
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vanishes again. Moreover, ~q~ and Orrqn(7. ) completely disappear in this 
case. 

I finally comment on the complex wavenumbers Qz,~qn, given in (8.1), 
which appear in the pressure eigenfunctions/~oq~ Since the imaginary 
part of Qz,~q, is small compared to qnz, it follows that it gives rise to a 
large-scale modulation, whose effect is mostly pronounced near the reso- 
nance/~ = 1. It is illuminating to evaluate/~q,(Z) for this case in the central 
region (z~O) and close to the walls separately. Using (6.21) and (8.1), one 
obtains from (7.6) for values z~O 

f i~q . (Z)  : Nq. c o s  qnz z -I'- n ~ (z ~ 0) (8.5a) 

and for z--, +_d/2 

F ;) 1 /~q,(Z) = -~- (exp b~q,) exp 1 +- n --* _+ 

Notice that these formulas apply on a scale that is intermediate between 
q,z 1 and d. It is observed from (8.5) and (8.2) that the corresponding 
pressure waves, given by 

p~q,(r, t) =/3 q,(Z) exp(-h~q~ 

(cf. Section2) slowly change from standing waves at the .center to 
propagating waves near the walls. The standing wave pattern near the 
center may be regarded as a superposition of two propagating waves that 
travel in opposite directions, both components having the same amplitude. 
As one approaches one of the walls, the amplitudes of the two propagating 
components become more and more unequal until, close to the wall, the 
component that propagates away from the wall is completely suppressed. 
In other words, for/7 = 1 there is no reflection of sound at the walls. 

8.2. Nonequilibrium Effects 

I now discuss how the sound modes are modified in the bulk fluid due 
to the presence of the heat flux. To this end, it is most appropriate to 
consider again a composite pressure wave, defined by 

p~q~(r, t) ~ p~q,(r) exp(-h~q~ (8.6) 

where 

p a q n ( r )  = PC~qn(Z) exp( iq l l  " r  N ) 
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Moreover, to focus on the bulk effects, I restrict consideration in the 
following to completely rigid walls, so that the wall absorption coefficients 
vanish. Using (7.6), decompose (8.6) into two propagating parts, 

p~,~ , t) + p~,,(r, t) (8.7) p~,,(r, t )=  + r 

where 

+ r p~-q~ , t) = N,~ exp i~b+ (r, t) (8.8) 

+ r and ~b~-q,( , t) are complex phase functions, given by 

+ r r ~byq,, ( , t ) =  + dZ 'Qz ,~q , ( z )+ql ! ' r l I+ ih~q t  (8.9) 
- -  - - d / 2  

+ r The relations Re ~byq,( , t) = 0 determine the locations of the wavefronts, 
denoted by r+q,(t). Using (7.2) and (7.3), one finds from (8.9) that 

rg-,~ + = ac(z) ~t+ (z) (8.10) 

. ~ +  
where q y ( z ) = [ q l l + q , z ( Z ) e z ] / q , ( z  ). Equation (8.10)implies  that the 
phase velocities are not constant (in magnitude or in direction). In fact, 
(8.10) describes the bending of sound due to the spatially inhomogeneous 
speed of sound. 

Denoting by s the distance along the curved sound rays that run 
perpendicular to the wavefronts, one finds from (8.10) and (6.12), (6.15) 
that 

d 

(8.11) 
d d 
~ =  - ( 1  - ~ ( ] ~ ) ' e z  ~ l n  c 

These equations determine the rays uniquely, given some "initial" condi- 
tions at s = 0. Equations (8.11) may also be derived from a Hamiltonian.(l~ 

Finally, I comment on the anomalous sound damping. To focus on the 
simplest case, I assume that c is independent of temperature, so that there 
is no sound bending. Moreover, I put qll = 0  and consider only the wave 

+ r p +~~ , t) which propagates in the positive z direction, the wavefront being 
located at r ( t )=  ( c t - d / 2 )  ez. Inserting (7.2)-(7.5) into (8.8), (8.9), one 
obtains 

+ 1 [_ ( z ( , )  dz' ] 
p +,,(t) = p +,~ t) = ~ exp 

2~ x / d  [ "  ~-a/2 lq.(z')J 

1  exp[-q: f 
21r x /d  2c -d/2 
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where also (6.18) has been used. The expression (8.12) describes the 
amplitude at the wavefront of a pressure wave that starts at time t = 0 at 
the wall z = -d/2. It is observed from (8.12) that the wave is not exponen- 
tially damped in general. Rather, the damping depends in a functional way 
on the spatial profile of the sound damping coefficient. 

To illustrate the implications of (8.12), let us assume, as an example, 
that the equation of state for F s is of the form Fs(T)=F~oexp(-mT), 
where m>0.11 Assuming, furthermore, that the thermal conductivity is 
constant, one obtains a linear temperature profile, so that 

V,(z)= exP I-mdT (z 
dz\ 

(8.13) 

In this case it follows from (8.12) that the amplitude of the wave that 
arrives after the time t = d/c at the wall z = d/2 is given by 

p+q, t =  oc exp L ~ ~ - ) -  (8.14) 

For small temperature gradients, [dT/dz I ~ (md) -~, the right-hand side of 
(8.14) reduces to exp[-d/l~2)]. This means that a wave starting at 
z = - d / 2  with an attenuation length l ~ < d  is essentially damped out 
before it reaches the other wall. On the other hand, if dT/dz ~> (rod) 1, one 
finds from (8.14) that 

p+q, t =  oc exp l~)m-dT/d z (8.t5) 

independent of d! Notice that (8.15) is of the order 1 when 

l (_~>(mdT~ I d lnF,  1 
"" \ dz ) = --d2--z 

This implies that a wave starting at z = - a l l 2  with a local attenuation 
length that is larger than the scale on which F~(z) changes effectively 
experiences so little damping that a substantial fraction of that wave arrives 
at the other wall, regardless of how large d is. This extreme reduction of the 
damp!ng occurs because the wave is propagating in the direction of 
decreasing Fs(z ). In the opposite case, i.e., when the wave propagates in the 
direction of increasing F~, the effective damping is faster than exponential. 

n This is actually a good fit for waterJ m 
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